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CS 188: Artificial Intelligence

Spring 2010

Lecture 17: Bayes’ Nets IV – Inference

3/16/2010

Pieter Abbeel – UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, 

Andrew Moore

Announcements

� Assignments

� W4 back today in lecture

� Any assignments you have not picked up yet

� In bin in 283 Soda  [same room as for submission drop-off]

� Midterm

� 3/18, 6-9pm, 0010 Evans  --- no lecture on Thursday

� We have posted practice midterms (and finals)

� One note letter-size note sheet (two sides), non-programmable 

calculators  [strongly encouraged to compose your own!]

� Topics go through last Thursday

� Section this week: midterm review
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Bayes’ Net Semantics

� Let’s formalize the semantics of a 
Bayes’ net

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution for each node
� A collection of distributions over X, one for 

each combination of parents’ values

� CPT: conditional probability table

� Description of a noisy “causal” process

A
1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

� For all joint distributions, we have (chain rule):

� Bayes’ nets implicitly encode joint distributions
� As a product of local conditional distributions

� To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

� This lets us reconstruct any entry of the full joint
� Not every BN can represent every joint distribution

� The topology enforces certain conditional independencies 4

Bayes Nets Representation Summary

� Bayes nets compactly encode joint distributions

� Guaranteed independencies of distributions can 
be deduced from BN graph structure

� D-separation gives precise conditional 
independence guarantees from graph alone

� A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution
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Inference

� Inference: calculating some 
useful quantity from a joint 
probability distribution

� Examples:
� Posterior probability:

� Most likely explanation:
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Inference by Enumeration

� Given unlimited time, inference in BNs is easy

� Recipe:

� State the marginal probabilities you need

� Figure out ALL the atomic probabilities you need

� Calculate and combine them

� Example:
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Example: Enumeration

� In this simple method, we only need the BN to 
synthesize the joint entries
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Inference by Enumeration?

9

Variable Elimination

� Why is inference by enumeration so slow?

� You join up the whole joint distribution before you 
sum out the hidden variables

� You end up repeating a lot of work!

� Idea: interleave joining and marginalizing!

� Called “Variable Elimination”

� Still NP-hard, but usually much faster than inference 
by enumeration

� We’ll need some new notation to define VE
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Factor Zoo I

� Joint distribution: P(X,Y)

� Entries P(x,y) for all x, y

� Sums to 1

� Selected joint: P(x,Y)

� A slice of the joint distribution

� Entries P(x,y) for fixed x, all y

� Sums to P(x)
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cold rain 0.3

Factor Zoo II

� Family of conditionals: 

P(X |Y)

� Multiple conditionals

� Entries P(x | y) for all x, y

� Sums to |Y|

� Single conditional: P(Y | x)

� Entries P(y | x) for fixed 
x, all y

� Sums to 1
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Factor Zoo III

� Specified family: P(y | X)

� Entries P(y | x) for fixed y,

but for all x

� Sums to … who knows!

� In general, when we write P(Y1 … YN | X1 … XM)

� It is a “factor,” a multi-dimensional array

� Its values are all P(y1 … yN | x1 … xM)

� Any assigned X or Y is a dimension missing (selected) from the array
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Example: Traffic Domain

� Random Variables

� R: Raining

� T: Traffic

� L: Late for class!
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T

L

R
+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

� Track objects called factors

� Initial factors are local CPTs (one per node)

� Any known values are selected

� E.g. if we know                  , the initial factors are

� VE: Alternately join factors and eliminate variables 15

Variable Elimination Outline

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.3

-t +l 0.1

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

� First basic operation: joining factors

� Combining factors:

� Just like a database join

� Get all factors over the joining variable

� Build a new factor over the union of the variables involved

� Example: Join on R

� Computation for each entry: pointwise products
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Operation 1: Join Factors

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81
T

R

R,T

Example: Multiple Joins
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T

R Join R

L

R, T

L

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

Example: Multiple Joins
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Join T

R, T, L

R, T

L

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729
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Operation 2: Eliminate

� Second basic operation: marginalization

� Take a factor and sum out a variable

� Shrinks a factor to a smaller one

� A projection operation

� Example:
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+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t 0.17

-t 0.83

Multiple Elimination
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Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134

-l 0.886

P(L) : Marginalizing Early!
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Sum out R

T

L

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t 0.17

-t 0.83

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

T

R

L

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

Join R

R, T

L

Marginalizing Early (aka VE*)

Join T Sum out T
T, L L

* VE is variable elimination

T

L

+t 0.17

-t 0.83

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134

-l 0.886

� If evidence, start with factors that select that evidence

� No evidence uses these initial factors:

� Computing                        , the initial factors become:

� We eliminate all vars other than query + evidence
24

Evidence

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r 0.1 +r +t 0.8

+r -t 0.2

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

� Result will be a selected joint of query and evidence

� E.g. for P(L | +r), we’d end up with:

� To get our answer, just normalize this!

� That’s it!
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Evidence II

+l 0.26

-l 0.74

+r +l 0.026

+r -l 0.074

Normalize



5

General Variable Elimination

� Query:

� Start with initial factors:
� Local CPTs (but instantiated by evidence)

� While there are still hidden variables (not Q or evidence):
� Pick a hidden variable H

� Join all factors mentioning H

� Eliminate (sum out) H

� Join all remaining factors and normalize
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Variable Elimination Bayes Rule
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A B P

+a +b 0.08

+a ¬b 0.09B A P

+b +a 0.8

b ¬a 0.2

¬b +a 0.1

¬b ¬a 0.9

B P

+b 0.1

¬b 0.9 a

B a, B

Start / Select Join on B Normalize

A B P

+a +b 8/17

+a ¬b 9/17

Example

Choose A
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Example

Choose E

Finish with B

Normalize
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Variable Elimination

� What you need to know:

� Should be able to run it on small examples, understand the 
factor creation / reduction flow

� Better than enumeration: saves time by marginalizing 
variables as soon as possible rather than at the end

� We will see special cases of VE later

� On tree-structured graphs, variable elimination runs in 
polynomial time, like tree-structured CSPs

� You’ll have to implement a tree-structured special case to 
track invisible ghosts (Project 4)


