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Announcements

= Assignments
= W4 back today in lecture

= Any assignments you have not picked up yet
In bin in 283 Soda [same room as for submission drop-off]

= Midterm
—> = 3/18, 6-9pm, 0010 Evans --- no lecture on Thursday
= We have posted practice midterms (and finals)

= One note letter-size note sheet (two sides), non-programmable g
calculators [strongly encouraged to compose your own!]

—® Topics go through last Thursday
Section this week: midterm review

Bayes’ Net Semantics |,

J
= Let's formalize the semantics of a
Bayes’ net @ e @
= A set of nodes, one per variable X
= Adirected, acyclic graph
= A conditional distribution for each node e ‘:®

= A collection of distributions over X, one for
each combination of parents’ values

P()ﬁ|a1 ...an)

P(X|A;... An)

= CPT: conditional probability table
~» = Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities s

Probabilities in BNs

= For all joint distributions, we have (chain rule):
n
Play,eo,on) = 1] Pilen, o), (2

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, nfultiply
all the relevant conditionals together:

n

P(z1,@2,...7n) = ] P(zi|parents(X;)) <

ittt
=1

= This lets us reconstruct any entry of the full joint
= Not every BN can represent every joint distribution
= The topology enforces certain conditional independencies 4

Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can
be deduced from BN graph structure -

= D-separation gives precise conditional
independence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectabl
until you inspect its specific distribution

Inference

= Inference: calculating some
useful quantity from a joint

probability distribution ° G
= Examples:
= Posterior probability: °
P(QlEl =e1,... By =ep) u m

= Most likely explanation:

argmaxq P(Q=gqlE1=¢€;.




Inference by Enumeration

= Given unlimited time, inference in BNs is easy
= Recipe:

= State the marginal probabilities you need <3—

= Figure out ALL the atomic probabilities you need

= Calculate and combine them

= Example: ° G
P(+b| + j,+m) = -

[ P(4b,+j,+m) °

Pits+m) = (4) (w)

Example: Enumeration

= In this simple method, we only need the BN to
synthesize the joint entries

P(+b,4+j,+m) =
e 5
P(+b) P(+¢) P(+a|-+b, +¢) P(+j|+a) P(+-ml|+a)+
»D/ 1IN ) N/ 11 1 N/ el N/ 1 I A}
L\T0o)r(te)r{—a|+o, TC}F\T‘”—U}FKTWH—G}T
P(+b)P(=€) P(+al+b, —e) P(+3l+a) P(+m|+a)+
P(+b)P(=€) P(~a|+b, ) P(+j|—a) P(+m| —a)

Inference by Enumeration?

Variable Elimination

= Why is inference by enumeration so slow?
= You join up the whole joint distribution before you

sum out the hidden variables
= You end up repeating a lot of work!

= |dea: interleave joining and marginalizing!
= Called “Variable Elimination”

= Still NP-hard, but usually much faster than inference
by enumeration

= We’ll need some new notation to define VE

Factor Zoo |

P(T,W) _QWT)

= Joint distribution: P(X,Y) I w |P
= Entries P(x,y) for all x, y hot | sun | 04
= Sumsto 1 hot rain | 0.1

cold sun | 0.2
cold rain | 0.3

J{an‘n\ v Tad W
= Selected joint: P(x,Y) P(cold, W)
= Aslice of the joint distribution T w P
= Entries P(x,y) for fixed x, all y cold | sun | 0.2
= Sums to P(x) cold | rain | 0.3

gﬂo{‘!\ g ton-d\;’u

QWi T= )
Factor Zoo I

7 olwitz
/( w0

= Family of conditionals: P(WI|T)
_(Lu“i\. [N
P(X| T w P
* Multiple conditionals hot | sun | 0.8 WadT
= Entries P(x | y) forall x, y hot | rain 1oz ]‘ P(W |hot)
* Sumsto V] cold sun | 0.4 &(Wﬂ"
cold rain | 0.6 WICOld)
= Single conditional: P(Y | x) P(W|cold) (N, ba)
= Entries P(y | x) for fixed T W b JY A ]
x, ally
« Sumsto 1 cold sun | 0.4
cold rain | 0.6 &~




Factor Zoo Il 4,7

P(Taé@
T | w P

hot | rain | 0.2|k P(rain|hot)
cold rain | 0.6 P('r‘ain\cold)

{
{ 4 r e
= In general, when we write P(Y; ... Yy | X; ... Xy)
= |t is a “factor,” a multi-dimensional array
= lts values are all P(y; ... yn | Xq ... Xp)
= Any assigned X or Y is a dimension missing (selected) from the array

Qs )

= Specified family: P(y | X)
= Entries P(y | x) for fixed y,
but for all x
= Sumsto ... who knows!

Example: Traffic Domain

"
[r [o9]

= Random Variables (»)

= R: Raining
= T: Traffic o P(T|R) Vm
= L: Late for class! o ;t gg
e o [+t [o1
-r -t 0.9
P(L| ,Q,(Lﬂ
v + | + [03
]—DV\S + -l 0.7
S wmating t |+ |01
-t -l 0.9

Variable Elimination Outline

= Track objects called factors
= |nitial factors are local CPTs (one per node)

PR ED) =
[+ Jo1] +r | +t [ 08 |+ [03]|¥
L T oo +r [t [02 + | -1 |07

o |+t o1 | 4 [o1le-

Tt o9 | 1 Jo9

= Any known values are selected
= E.g.if we know L = 4, the initial factors are

P(R) P(T|R) P(+T)
[+ [ o1] +r | +t [038 [+t ]+ Jo3]
|« [ o9 | +r | t |02 [t ]+ Jo1]
o [+t ]o1
o[t o9

= VE: Alternately join factors and eliminate variables '

Operation 1: Join Factors

= First basic operation: joining factors
= Combining factors:
= Just like a database join
= Get all factors over the joining variable
= Build a new factor over the union of the variables involved

= Example: Join on R 4 4

@) P(R), x P(T|R), == P(R,T) <+

[ oa | F +t [os8 [+t ] 008
)] -t [o2 { ]t ] 002
-r | +t]01 {| -r |+ [ 0.09
o [% | t]09 =1+ os1
ra ﬁ"( ' Ledons pa ke Mg L whas P9
vt (AR
N § 16 J

hble

= Computation for each entry: pointwise produc

vr,t:  P(r,t) = P(r)- P(t|r)

Example: Multiple Joins

P(R,T) &‘*‘“ (‘9
+r | +t | 0.08

e [r[t]om m
o +r |+t /0.8 r | #1009
|t [02 | -tfos1 Q
-r |+ 0.1
e -r|-t]09 S Lt

P(LIT) P(LIT)
+t |+l 0.3 + |+ 0.3
+# |- ]0.7 » + |-l |07
-t [ +]0.1 -t |+ 0.1
-t | -1]0.9 -t | -1 0.9

Example: Multiple Joins

\\0_‘;\ T

[
i G

P(R,T) | ooy
—[er[+t]008F, L +t ;ZR+T L)-

+r| -t [0.02 b =t s M )o.ovg

@ o |+t ]0.09 H +r | +t |, 4+ |0.024

| -t]os1 Join T FEr 7| -1 [ 0.056

1+ [0.002

o P(L|T) -%(LIJV_’—> t; ] P::I 41 |0.018

+t | 4 |0.027

+t |+ [0.3%— “E R4 [oo0e3
[+t 1]07] = L -k ’[;E+= 1 | 0.081
-t [+ 0.1 ~t[“f T [o0729
t[-1]o9 b Q.\MU/"M

lﬂt 19




Operation 2: Eliminate

= Second basic operation: marginalization
= Take a factor and sum out a variable <—
= Shrinks a factor to a smaller one
= A projection operation

= Example: \@LL,T) *U/}
— P(R,T)
w[Goos] SUM R P(T)
wlafo| > [@D[or
-r |6D]0.09 -t | 083
Tt |ost
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Multiple Elimination
o R j= T

G ©

.

)

‘é P(®T’L) Sum Y Sum
+r + | + |0.024 u P(T L) -
o [+t | 1 |oose—Out R ’ outT.  p(p)
+r | t | + |0.002 +t |+ [ 0.051 -
4|t | A 0018 | === ] o119 E—F>
o | st | 4 | 0.027 -t |+l | 0.083 N
o |+t | - |0.0633— t]-+]o747] .. f
o+ | -t |+ 0081
- |t ] - ]0729
7
2
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— P(L) : Marginalizing Early!

P(R) £
[-r [os] JoinR Sum out R
P (@T) P(T ¥
(®) LR T2 [o0s ()
+r | +t |0.8 +r | -t | 0.02
+r| -t 0.2 ( -r | +t | 0.09
-t [0.81

N
EREY
~lA
oo
ok

.
i

P(LIT) P(LIT)

o +t |+ (0.3 +t |+ [0.3 .
+ | -1 [0.7 + |- (0.7 e + |-l 0.7

-t | +]0.1 -t |+ ]0.1 -t |+ 0.1
-t ] -1]0.9 -t | -1]0.9 -t -1]09] 22

Marginalizing Early (aka VE*)
Join T @ @

Sumout T
J—
P(T,L
(1,L) P

+t | + [ 0.051

+ | - |0119 | [+ [o.134]

-t | +l | 0.083 = | - [o8s6]
+t | + 0.3 2|4 0747
+ | -1 [0.7
-t [+ o . jz(l_)
t]-]o09

* VE is variable elimination

Evidence - 7-0

. . . 4
= If evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R)  P(L|T) a-
[+ T o1 ] +r | +t [ 0.8 +t [+ [03
o [o9] +r | t [02 +t | 4 |07
o[+t o1 & |+ o1
T |t |09 ERENEE
= Computing( P(L| 4 7)), the initial factors become: - VJ
[RN'N
]0
PG P+ P e
(.9 [+ o1 ] [+r [+t Jo8] +t [+ [03
+r | t [02] +t | 4 |07
& |+ o1 .
<1 1 o9y "m\MImN‘J

. . $
— We eliminate all vars other than query + evidence ],;_VIP‘;:’
\_/\__J — ———

Evidence |l

= Result will be a selected joint of query and evidence

= E.g.for P(L| +r), we'd end up with:

P(-}_j", E) Normalize
+ 2 :>

= To get our answer, just normalize this!
= That's it!
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?@? f T (A) PRI R (C18) = T Rlen<a) T AChme ) Plame Liem)

“General Variable Elimination*

TOh) T PRhse] Pl bl
= Query: P(9|E1 =e1,... By = Iy

= Start with initial factors:
—® Local CPTs (but instantiated by evidence)

hile there are still hidden variables (not Q or evidence):

Pick a hidden variable H_ 1) Pr%z,*v‘\t%

= Join all factors mentioning H _ew A }
Eliminate (sum out) H AR

TR AL A 6 )

—= Join all remaining factors and normalize

‘%(91 e, %) = ?(&)‘u"ﬂd
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Variable Elimination Bayes Rule

qOEN
Start / Select “Joinon B

Normalize

e ® e
B | P
+b 0.1
-b | 09 o (a, B) P(Bla)

A B P A B P
~P(A|B)~P(a|B) ta | + | 008 ta | +b | 817
B A P +a —b 0.09 +a —b 917

+b +a 0.8

tr =10
—b +a | 0.1

o -5
o e o
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Example s

P(B|j,m) o« P(B, j,m) )

‘@ L,) P(AIB,E)  P(j|4) {D(mlA)‘

‘L.L.A‘u\ catles : A € leq,_g , 2 tadence M.‘,)\-\

- Choose A . E)
P(A|B, E) _%(,v»\ ASE ,g_(‘.n.B/
P(JIA) » [X) PG.m.A|B.F) » [£) PG.mIB.E)

m|A) /i

—o | (P(B) P(E P(j,m|B,]§‘)
N ’,
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BSP( RIIPLERS (M 8,5) PR Pl A)

- ! _Example~
L Ll

= ?(%l \\,k)

,L”{l m——
[ pB) P PGmEE) |

Choose E Ff m E.b)

P(f;y(jl)B’E) P(j,m, E|B) » PG, m|B)

{(j.m 8

P(B) P(j,m|B)

Finish with B

Variable EIimination/“:o\

= What you need to know:
= Should be able to run it on small examples, undeérstal
factor creation / reduction flow

= Better than enumeration: saves time by marginalizings~~
variables as soon as possible rather than at the end

@—-0—=0 .. O0>R 1w Ladns
ill | f VE lat de
e will see special cases o ater M hﬁ
= Ont tured graphs, variable elimination runs |n
polynomial time, Tike tree-structured CSPs
= You'll have to implement a tree-structured special case to
track invisible ghosts (Project 4)

Yoy T —
€ (Xu \\(\:"\) {;, Yoo, Ynetyoos X2 —
N K\’t) 'ﬁn/l‘

P(I;’(fbe) P(j,m,B) P(Blj,m)
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